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Many real-world and man-made objects are symmetry, therefore, it is reasonable to 

assume that some kind of symmetry may exist in data clusters. In this paper a new clus-
ter validity measure which adopts a non-metric distance measure based on the idea of 
“line symmetry” is presented. The proposed validity measure can be applied in finding 
the number of clusters of different geometrical structures. Several data sets are used to 
illustrate the performance of the proposed measure.      
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1. INTRODUCTION 
 
Cluster analysis is one of the basic tools for exploring the underlying structure of a 

given data set and plays an important role in many applications [1-6]. In cluster analysis, 
two crucial problems required to be solved are (1) the determining of the similarity 
measure based on which patterns are assigned to the corresponding clusters and (2) the 
determining of the optimal number of clusters. While the determining of the similarity 
measure is the so-called data clustering problem, the estimation of the number of clusters 
in the data set is the cluster validity problem. In order to mathematically identify clusters 
in a data set, it is usually necessary to first define a measure of similarity or proximity 
which will establish a rule for assigning patterns to the domain of a particular cluster 
center. Recently, several different clustering algorithms have been proposed to deal with 
clusters with various geometric shapes. These algorithms can detect compact clusters [7], 
straight lines [8], shells [9-11], contours with polygonal boundaries [12] or well-sepa- 
rated non-convex clusters [13]. One thing that should be emphasized is that there is no 
cluster algorithm which can tackle all kinds of clusters. Some comprehensive overview 
of clustering algorithms can be found in the literature [1-4]. 

In fact, if cluster analysis is to make a significant contribution to engineering ap-
plications, much more attention must be paid to cluster validity issues that are concerned 
with determining the optimal number of clusters and checking the quality of clustering 
results. For the partition-based clustering algorithm [7-13], the cluster number should be 
decided in prior. Basically, there are three different approaches to the determination of 
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the cluster number of a data set. The first approach is to use a certain global validity 
measure to validate clustering results for a range of cluster numbers [14-19]. The second 
approach is based on the idea of performing progressive clustering [20-22]. The third 
approach is the projection-based approach [23-29]. Projection algorithms allow us to 
visualize high-dimensional data as a two-dimensional or three-dimensional scatter plot. 
The focus of the paper is not to argue which approach is the best one. If one decides to 
choose the first approach then we try to provide a new measure to validate clustering 
results more effectively than existing measures. The goal of this paper is to propose a 
new validity measure that is able to deal with clusters with line symmetry structure. 

Many different cluster validity measures have been proposed [14-19, 30-38], such 
as the Dunn’s separation measure [14], the Bezdek’s partition coefficient [15], the Xie- 
Beni’s separation measure [16], Davies-Bouldin’s measure [17], the Gath-Geva’s meas-
ure [18], the CS measure [19] etc. Some of these validity measures assume a certain geo- 
metrical structure in cluster shapes. For example, the Gath-Geva’s validity measure that 
uses the value of fuzzy hypervolume as a measure is a good choice for compact hyperel-
lipsoidal clusters. However, it is a bad choice for shell clusters since the decision as to 
whether it is a well or badly recognized ellipsoidal shell should be independent of the 
radii or the volume of ellipses. A minimization of the fuzzy hypervolume makes no sense 
for the recognition of ellipsoidal shells. Hence, some special validity measures (such as 
Dave’s fuzzy shell covariance matrix [30] and shell thickness [31]) are proposed for shell 
clusters. Depending on the desired results, a particular validity measure should be chosen 
for the respective application. 

In many cases, several different geometrical structures (e.g. compact clusters and 
shell clusters) may simultaneously exist in a data set. Furthermore, clusters can be of 
arbitrary shapes. Examples can be found in various chromosome images and images of 
objects with different geometrical structures. Most of the common criteria for cluster 
validity cannot work well in complex real data with a large variability of cluster shapes. 
Since clusters can be of arbitrary shapes and sizes, we have to seek a more flexible valid-
ity measure to deal with the problem of geometrical shapes. The laws of nature give 
symmetry or near-symmetry to their products. Looking around us, we get the immediate 
impression that almost every interesting real-world objects (e.g. flowers, starfish, human 
faces, etc) or man-made objects (e.g. architectures, rose windows, 3C products, etc.) own 
some kind of generalized form of symmetry (e.g. point symmetry, radial symmetry, re-
flective symmetry or line symmetry, etc.). In addition to the shapes of objects, symmetry 
is also an important parameter in physical and chemical processes. 

Since symmetry is so common in nature, it is reasonable to assume some kind of 
symmetry exist in the structures of data clusters. Therefore, we may assign data to a clus-
ter if they present a symmetrical structure with respect to the corresponding cluster center. 
Those aforementioned symmetry operators [39-43] are efficient and affective in image 
processing for the detection of objects with some kind of symmetry; however, it seems 
that there is no simple way to generalize them to cluster high-dimensional data. Although 
objects with point symmetry is very widespread, line symmetry is the most common type 
of symmetry around us.  

In this paper, we try to explore the possibility of using line symmetrical properties 
as a new validity measure to deal with data with different geometrical structures. The 
proposed validity measure can be applied in finding the number of clusters of different 
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geometrical structures. Several data sets are used to illustrate the performance of the pro-
posed measure. The organization of the rest of the paper is as follows. In Section 2, we 
briefly reviewed some popular validity measure. In Section 3, we first introduced the 
idea of line symmetry distance measures. Then the proposed validity measure employing 
the line symmetry distance was fully discussed. Several examples were used to demon-
strate the effectiveness of the new validity measure. Section 4 presents the simulation 
results. Finally, Section 5 presents the conclusion.    

2. CLUSTER VALIDITY MEASURES 

Cluster validation refers to procedures that evaluate the clustering results in a quan-
titative and objective fashion. Some kinds of validity measures are usually adopted to 
measure the adequacy of a structure recovered through cluster analysis. Determining the 
correct number of clusters in a data set has been, by far, the most common application of 
cluster validity. Bensaid et al. [44] grouped validity measures into three categories. The 
first category consists of validity measures that evaluate the properties of the crisp struc-
ture imposed on the data by the clustering algorithm [14, 17]. The second category con-
sists of measures that use the membership degrees produced by the corresponding fuzzy 
clustering algorithms (e.g. the FCM algorithm) [3, 15], where the membership degree 
represents the possibility of a data pattern belonging to the specified cluster. The third 
category consists of validity measures that take into account not only the membership 
degrees but also the data themselves [16, 18, 31]. Each has its own considerations and 
limitations. A comparative examination of thirty validity measures is presented in [33] 
and an overview of the various measures can be found in [45]. Since it is not feasible to 
attempt a comprehensive comparison of our proposed validity measure with many others, 
we just chose three of the popular measures for comparisons. These three measures have 
different rationales and properties. Consider a partition of the data set X = {xj, j = 1, 2, …, 
N) and the center of each cluster vi(i = 1, 2, …, c), where N is the data number and c 
represents the cluster number. 

 
Partition coefficient (PC) [15]: 

Bezdek designs the partition coefficient (PC) to measure the amount of “overlap” 
between clusters. He defines the partition coefficient (PC) as follows: 


 


c

i

N

j
iju

N
cPC

1 1

2)(
1

)(     (1) 

where uij(i = 1, 2, …, c; j = 1, 2, …, N) is the membership of data pattern j in cluster i. 
The closer this value is to unity the better the data are classified. In the case of a hard 
partition, we obtain the maximum value PC(c) = 1. If we are looking for a good partition, 
we aim at a partition with a maximum partition coefficient. This kind of partition yields 
the “most unambiguous” assignment. The disadvantages of the partition coefficient are 
its monotonic decreasing with c and the lack of direct connection to some properties of 
the data themselves.  
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Classification entropy (CE) [3]: 
The classification entropy measure strongly resembles the partition coefficient; how- 

ever, it is related on Shannon’s information theory. The classification entropy is defined 
as follows: 

1 1

1
( ) log( ).

c N

ij ij
i j

CE c u u
N  

    (2) 

If we have a crisp partition we have the most information (i.e. the minimum en-
tropy). Consequently, a partition with the minimum entropy is regarded as a good parti-
tion. Although this validity measure is based on Shannon’s information theory, it can be 
viewed as a measure for the fuzziness of cluster partition, which is very similar to the 
partition coefficients. Bezdek proves that the relation 0  1  PC(c)  CE(c) holds for all 
probabilistic cluster partitions c. The limitation of the classification entropy can be at-
tributed to its apparent monotony and to an extent, to the heuristic nature of the rationale 
underlying its formulation.      

 
Separation measure (S) [16]: 

Xie and Beni introduce a validity measure, similar to the Dunn’s separation measure 
[14]. The separation measure S is defined as follows: 
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 (3) 

where ||xj  vi|| denotes the Euclidean distance between the pattern, xj, and the cluster 
center, vi, and dmin represents the minimum Euclidean distance between cluster centers. 
The separation measure S is based on fuzzy compactness and separation. While the nu-
merator of Eq. (3) measures the total variance (or the compactness) of each fuzzy cluster, 
the denominator measures the separation defined as the minimum distance between clus-
ter centers. The smallest value of S(c) indicates a valid optimal partition because uij will 
be high when ||xj  vi|| is low and well separated clusters will produce a high value of 
dmin. 

Before introducing the proposed measure, we first use the example shown in Fig. 1 
(a) to illustrate the motivation of the new measure. There are three clusters in the dataset 
containing a spherical cluster and two linear clusters, and two linear clusters are close to 
each other. First, we use the FCM algorithm [3] to group the data set into 2 clusters 
(shown in Fig. 1 (b)) and 3 clusters (shown in Fig. 1 (c)). For the case of 2 clusters, the 
membership degrees for the two patterns, x1 and x2 (shown in Fig. 1 (b)), are u11 = 0.991, 
u21 = 0.009, u12 = 0.901 and u22 = 0.098. As for the case of 3 clusters, the membership 
degrees become u11 = 0.544, u21 = 0.033, u31 = 0.423, u12 = 0.909, u22 = 0.025, and u32 = 
0.066. By examining these clustering results, we have the following observations: 
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(a)                        (b)                         (c) 

Fig. 1. (a) The data set containing a combination of a spherical cluster and two linear clusters. The 
clustering result achieved by the FCM algorithm at (b) c = 2; (c) c = 3. 

 
1. While the membership degree, u12, of the data pattern, x2, increases from 0.901 (for 

the case of 2 clusters) to 0.909 (for the case of 3 clusters); the membership degree, 
u11, of the data pattern, x1, decreases from 0.991 (for the case of 2 clusters) to 0.544 
(for the case of 3 clusters). For data patterns located at the upper region of cluster 1 
(e.g. x2) or the right region of cluster 3, the increment of their membership degrees 
induced by partitioning the data set into 3 clusters indicates that it is appropriate to 
partition the data set into 3 clusters. On the contrary, the decrement of the member-
ship degrees for data patterns located at the lower region of cluster 1 (e.g. x1) or the 
left region of cluster 3 indicates that the partition of 3 clusters is not a good choice. 
Because the total decrement of membership degrees is larger than the total increment 
of membership degrees due to the increases of the number of clusters, the value of 
the PC measure decreases from 0.923 to 0.877. Understandably, the PC measure fa-
vors the partition of two clusters in this example. A similar reason can also be ap-
plied to explain why the classification entropy measure CE can not find the right 
number of clusters for this data set either.  

2. Not only dose the value of the numerator in Eq. (3) changes from 86.59 to 46.87 
when the number of clusters changes from 2 to 3, but also the minimum Euclidean 
distance between cluster centers, dmin, changes from 4.51 to 2.17. While the decre-
ment of the numerator indicates that the degree of compactness increases, the dec-
rement of the denominator indicates the degree of separation decreases. Finally, the 
value of S(c) changes from 0.048 to 0.054. Therefore, the S(c) measure prefers the 
partition of 2 clusters. 

3. The two measures, PC and CE, use the basic heuristic rule that good clusters are not 
fuzzy. Consequently, they rely solely upon the memberships to determine the fuzzi-
ness of the partition. This example confirms what one already knows: validity meas-
ures that use only the fuzzy membership grades usually lack direct connection to 
some geometrical properties of the data themselves. 

4. The separation measure S uses
22

1 1

c N

ij j i
i j

u x v
 

 to measure the compactness. For 

compact spherical clusters, this kind of measure may be effective; however, for 
some clusters with different geometrical structures (e.g. linear clusters, shells, etc.), 
it may not work well. In this example, the data set includes not only a spherical 
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cluster but also two linear clusters so that it is not very surprising when we find out 
that the separation measure S can not find the correct partition. 

5. If we move two linear clusters closer to the spherical cluster (e.g. the distances be-
tween each other do not vary too much), the measures, PC, CE, and S, can find the 
correct number of clusters. 
 
Each validity measure implicitly imposes a certain structure on the data set, and if 

the data set happens to exhibit the structures, the validity measure can find the correct 
partition. No matter how good a validity measure is, there always are limitations associ-
ated with it since clusters can be of arbitrary shapes and sizes. Hence, there is no single 
“best” validity measure which can work well for any kind of clustering results.  

These observations motivate us to explore whether there is a validity measure which 
can deal with the validation of clusters with different geometric shapes under some cer-
tain assumptions. In our previous work [46], we find that line symmetry distance is very 
effective in clustering data with different structures. Consequently, we try to propose a 
new validity measure which is based on the idea of line symmetry. This new measure 
considers not only the distributions of the data set but also the degree of symmetry in 
each cluster. 

3. THE LINE SYMMETRY DISTANCE AND THE VALIDITY MEASURE 
USING LINE SYMMETRY 

What is line symmetry? For a 2-dimenstional figure, if it can be folded in such a 
way that one-half of it lies exactly on the other half is said to have line symmetry. The 
idea of line symmetry is very clear and simple but an immediate problem is how to find a 
metric to measure line symmetry. A kind of line symmetry distance was proposed in 
[47-49]. In this approach, the symmetrical line of a data set is defined by a center vector 
and an angle between the major axis of the data set and the x axis. The information of the 
major axis of the data points belonging to a class or a cluster is computed by the moment 
of order (p + q) method. Then the major axis is treated as the symmetrical line of that 
class or cluster. Furthermore, the Kd-tree based nearest neighbor search is used to reduce 
the complexity of computing the line distance. It is not clear how the proposed line sym- 
metry distance can be generalized to high-dimensional space. In their approach, the sym- 
metrical line is defined by a point and an angle between the major axis and the x axis. As 
we know, a point combined with an angle can define one and only one line in 2-dimen-
sional space but will produce an infinite number of lines in high-dimensional space. In 
addition, the authors themselves stated that the performance of their line symmetry dis-
tance depends on the selection of the number of nearest neighbors used in the computa-
tion of line symmetry distance. The authors in [47-49] proposed another similar defini-
tion of line symmetry in [50]. They assumed that a data set is symmetrical then it should 
be also be symmetric with respect to the first principal axis of the data set [50]. This as-
sumption may not be hold for many situations. There are objects which is symmetrical 
with respective to their second principal axis but not symmetrical to their first principal 
axis. Therefore, a new line symmetry distance which can deal with high-dimensional 
data points is developed by our previous work [46]. 
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3.1 The Line Symmetry Distance 
 
In one of our previous work, a so-called “point symmetry” distance (symmetry 

about a cluster center) was proposed in [51]. In [52], Bandyopadhyay and Saha proposed 
a new point symmetry-based distance measure. Their algorithm applies GA and Kd-tree 
based nearest neighbor search to reduce the complexity of finding the closest symmetric 
point. Although object with point symmetry is very widespread, line symmetry is the 
most common type of symmetry around us. Based on the point symmetry distance, a new 
line symmetry distance is developed in our another work [46]. Before we present the 
definition of the proposed line symmetry distance, we briefly review the definition of the 
point symmetry distance.  

A 2-dimensional figure is with point symmetry if it can be rotated 180 degrees 
about a point onto itself. To generalize this idea of point symmetry to measure the degree 
of point symmetry for a set of high-dimensional data patterns, a point symmetry distance 
is defined as follows [51]. Given a data set X containing N patterns, xj, j = 1, …, N, and a 
reference vector c (e.g. a cluster center), the “point symmetry distance” between a pattern 
xj and the reference vector c is defined as 

1, ,

|| ( ) ( ) ||
( , ) min .

(|| || || ||)
j i

ps j i N
j iand i j

x c x c
d x c

x c x c


  


  

    (4)
 

Note that Eq. (4) is minimized (i.e., dps(xj, c) = 0) if there is a pattern xps
j* = (2c  xj) 

exists in the data set (see Fig. 2). The pattern xps
j* is then denoted as the point symmetrical 

data pattern relative to xj with respect to c as shown in Fig. 2.  

 
Fig. 2. An example for illustrating the bias problem incurred by the original version of the point 

symmetry distance. 
 

By further analyzing the point symmetry distance defined in Eq. (4), we find that 
the distance measure has a bias for data patterns with a larger distance from the center c 
even if they are with the same distance to the point symmetrical data pattern xps

j*. For 
example, two data patterns, x1 and x2, are with the same distance to the symmetrical data 
pattern xps

j* as shown in Fig. 2. According to the definition of Eq. (4), we find that 
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even if these two patterns are with the same

  
distances to the point symmetrical data pattern xps

j*. To amend this flaw, we modify the 
point symmetry distance as follows: 
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                     (a)                            (b) 

Fig. 3. The distance contours generated by the two versions of the point symmetry distance; (a) By 
Eq. (4). (b) By Eq. (5). 

Fig. 3 shows examples of the distance functions defined in Eqs. (4) and (5) for the 
case of xj = (1, 0), c = (0, 0)T, and xps

j* = (1, 0)T (corresponding to three small circle 
points in the figure). For each point in the picture plane, the distance is used for the in-
tensity. Here, small distance gets a dark color and large distance gets a light grey color. 
From Fig. 3, we find that Fig. 3 (b) presents concentric contours with center at the point 
symmetrical data pattern xps

j* but Fig. 3 (a) presents non-concentric contours. Therefore, 
the bias problem has been fixed by modifying the denominator of Eq. (4). 

Following the definition of a figure with point symmetry, we may point out that the 
line symmetrical data pattern relative to xj with respect to a center c and a unit direction 
vector e is the data pattern xls

j* as shown in Fig. 4 where the point symmetrical data pat-
tern relative to xj with respect to a center c is denoted as xps

j*. Similar to the definition of 
the modified version of the point symmetry distance defined in Eq. (5), the definition of 
the line symmetry distance is given as follows. Given a reference vector c and a unit di-
rection vector e, the “line symmetry distance” of a pattern xj in the data set X with re-
spective to a reference vector c and a unit direction vector e is defined as 

||)||||||||(||

||)()(||
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where the data pattern p is the normal projection of the data pattern xj onto the line 
formed by the data pattern c and the unit direction vector e. As for how to find the three 
vectors, c, p and e from the data set X, the computational procedure will be explained as 
follows. First of all, the mean vector c and the covariance matrix Cov can be approxi-
mated from the N data patterns by 


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Fig. 4. A geometrical explanation about the definitions of point symmetry and line symmetry. 
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Since the covariance matrix Cov is real and symmetric, we can find a set of n or-
thonormal eigenvectors from the matrix. One of the n orthonormal eigenvector will be 
chosen to be the unit direction vector e. The vector e is then regarded as the symmetric 
line of the data set. For each cluster, the eigenvector with the smallest amount of line 
symmetry distances (e.g., the i*th eigenvector in this case) is chosen to be the symmetri-
cal line of that cluster based on the following minimum-value criterion: 
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where Sk represents the data set consisting of data points belonging to cluster k and ek
i 

represents the ith eigenvector computed from the covariance matrix corresponding to the 
data set Sk. The normal projected data pattern p can be computed by 
 

p = c + ||c  p||  e = c + (xj  c)Te  e.  (10) 
 
After we have computed the normal projected data pattern p, we can find the line 

symmetrical data pattern, xls
j*, relative to xj with respect to the center c and the unit direc-

tion vector e by the following equation: 
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3.2 The Validity Measure Using Line Symmetry 
 
The proposed validity measure is referred to as LS measure and is computed as fol-

lows. Consider a partition of the data set X = {xj; j = 1, 2, …, N} and each data pattern xj 
is assigned to its corresponding cluster by a particular clustering algorithm. In order to 
calculate line symmetry distance, we need re-compute the cluster center vi (i.e. mean 
vector) and the covariance matrix Covi by using the following equation: 
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where Si is the set whose elements are the data patterns assigned to the ith cluster and Ni 
is the number of elements in Si. Note that we assign data patterns to the corresponding 
clusters using the maximum membership grade criterion if the clustering result is 
achieved by fuzzy clustering algorithms. Then we compute the degree of line symmetry 
of cluster i by 
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where the distance, dc(xj, vj, e
k
i*), represents the composite line symmetry distance defined 

in Eq. (14), de(xj, vi) represents the Euclidean distance between xj and vi, and d0 is a small 
valued positive constant. The reason why we use the composite line symmetry distance, 
dc(xj, vj, e

k
i*), rather than the line symmetry distance itself, dls(x, vi, e

k
i*), is as follows. The 

line symmetry distance itself may not work for situations where clusters themselves are 
line symmetric. A possible solution to overcome this limitation is to combine the line 
symmetric distance with the Euclidean distance in such a way that if data patterns are 
relatively close, then the line symmetry is more important. On the other hand, if the data 
patterns are very far, then the Euclidean distance is more important. The smaller the 
value of LSi is the larger the degree of line symmetry of cluster i has. The separation of 
clusters is defined as the minimum distance between clusters 
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Finally, the LS measure is obtained by averaging the ratio of the degree of line 
symmetry of the cluster to the separation over all clusters, more explicitly 
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While the numerator of Eq. (16) measures the average degree of line symmetry of 
entire clusters, the denominator measures the separation defined as the minimum dis-
tance between cluster centers. This measure favors the creation of a set of clusters that 
are maximally separated from one another and each cluster has the degree of line sym-
metry as large as possible. Therefore, a partition with the minimum LS(c) is regarded as a 
good partition. 

4. EXPERIMENTAL RESULTS 

We illustrate the effectiveness of the proposed validity measure by testing some 
data sets with different geometrical structures. For the comparison purpose, these data 
sets were also tested by the three popular validity measures  the partition coefficient 
(PC), the classification entropy (CE) and the Xie-Beni’s separation measure (S). The 
FCM algorithm or the Gustafson-Kessel (GK) algorithm [7] is applied to cluster these 
data sets at each cluster number c from c = 2 to c = 10. According the experimental re-
sults, we notice that the FCM algorithm is not suitable to be applied for ellipsoidal clus-
ters, but the GK algorithm can be used to cluster spherical and ellipsoidal clusters. There- 
fore, in examples 2 to 5, the GK algorithm is applied to cluster the data patterns. A value 
of the fuzzy exponent m = 2 was chosen for the FCM algorithm and the GK algorithm. 
The parameter d0 was chosen to be 0.005 for the composite line symmetry distance. 

 
Example 1: The data set shown in Fig. 1 (a) consists of a combination of a spherical 
cluster and two linear clusters. We generated the data patterns randomly with uniform 
distribution. The total number of data patterns is 400. In this example, the FCM algo-
rithm is applied to cluster the data patterns. The total number of data patterns is 400. The 
performance of each validity measure is tabulated in Table 1. In Table 1 and others to 
follow, the highlighted (bold and shaded) entries correspond to optimal values of the 
measures. Note that only the LS validity measure finds the optimal cluster is three, but 
the PC, CE and S validity measures choose two clusters as the optimal partition. The 
clustering result achieved by the FCM algorithm at c = 3 is shown in Fig. 1 (c). 

Table 1. Numerical values of the validity measures for Example 1. 
C 2 3 4 5 6 7 8 9 10 

PC 0.923 0.877 0.790 0.829 0.792 0.723 0.738 0.674 0.661 
CE 0.153 0.242 0.397 0.358 0.440 0.546 0.573 0.666 0.709 
S 0.048 0.054 1.372 0.075 0.142 0.297 0.363 0.257 0.218 

LS 0.050 0.017 0.037 0.096 0.238 0.170 0.160 0.184 0.158 
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Example 2: We randomly generated a mixture of spherical and ellipsoidal clusters with 
Gaussian distribution. This data set consists of 850 data patterns distributed on five clus-
ters, as shown in Fig. 5 (a). The clustering results achieved by the GK and FCM algo-
rithms at c = 5 are shown in Figs. 5 (b) and (c). We notice that the FCM algorithm is not 
suitable to be applied for ellipsoidal clusters; the two non-overlapped compact clusters 
are not clustered correctly. Therefore, in this example, the GK algorithm is applied to 
cluster the data patterns. The performance of each validity measure is given in Table 2. 
Both the S and LS validity measures find that the optimal cluster number c is at c = 5, but 
both the PC and CE validity measures indicate two clusters as the optimal partition.  

Table 2. Numerical values of the validity measures for Example 2. 
C 2 3 4 5 6 7 8 9 10 

PC 0.836 0.743 0.738 0.780 0.731 0.681 0.654 0.634 0.591 

CE 0.287 0.469 0.524 0.484 0.592 0.698 0.771 0.840 0.911 

S 0.398 0.180 0.186 0.082 0.383 0.392 0.296 0.274 0.796 

LS 0.143 0.083 0.045 0.041 0.091 0.152 0.126 0.180 0.137 

   

(a)                         (b)                           (c) 
Fig. 5. (a) The data set used in example 2; (b) the clustering result achieved by the GK algorithm at 

c = 5; (c) the clustering result achieved by the FCM algorithm at c = 5. 
 

Example 3: This data set consists of a combination of a ring-shaped cluster, a rectangu-
lar compact cluster and a linear cluster as shown in Fig. 6 (a). We generated the data pat-
terns randomly with uniform distribution. The total number of data patterns is 400. In 
this example, the GK algorithm is applied to cluster the data patterns. This example is 
considered to show that the validity measures, PC, CE and S, are not indicative of a good 
detection of clusters with different geometric shapes. The performance of each validity 
measure is given in Table 3. Only the LS validity measure finds the optimal cluster c at c 
= 3. The PC, CE and S validity measures fail to choose the correct number of clusters, 
and select c = 2 as the optimal partition. The clustering results achieved by the GK and 
FCM algorithms at c = 3 are shown in Figs. 6 (b) and (c). 
 
 



A NEW MEASURE OF CLUSTER VALIDITY USING LINE SYMMETRY 

 

455

 

Table 3. Numerical values of the validity measures for Example 3. 

C 2 3 4 5 6 7 8 9 10 

PC 0.837 0.834 0.772 0.708 0.669 0.658 0.657 0.645 0.629 

CE 0.279 0.312 0.438 0.574 0.660 0.724 0.720 0.762 0.814 

S 0.116 0.124 0.710 1.062 0.631 0.439 0.409 0.652 0.551 

LS 0.076 0.035 0.041 0.215 0.185 0.164 0.161 0.160 0.167 

 

   

(a)                        (b)                         (c) 
Fig. 6. (a) The data set used in example 3; (b) the clustering result achieved by the GK algorithm at 

c = 3; (c) the clustering result achieved by the FCM algorithm at c = 3. 

Example 4: This example demonstrates an application of the LS validity measure to de-
tect the number of objects in an image. In image processing, it is very important to find 
objects in images. In this example, these objects have different geometric shapes. Fig. 7 
(a) shows a real image consisting of a mobile phone, a doll, and an object of crescent. 
First, we apply the thresholding technique to extract the objects from the original image 
(see Fig. 7 (b)). Then we transfer the object pixels to be the data patterns. The GK algo-
rithm is used to cluster the data set. Table 4 shows the performance of each validity 
measure. The LS validity measure finds that the optimal cluster number c is at c = 3. 
However, the PC, CE and S validity measures find the optimal cluster number at c = 2. 
Once again, this example demonstrates that the proposed LS validity measure can work 
well for a set of clusters of different geometrical shapes. The clustering results achieved 
by the GK and FCM algorithms at c = 3 are shown in Figs. 7 (c) and (d). 

Table 4. Numerical values of the validity measures for Example 4. 

C 2 3 4 5 6 7 8 9 10 

PC 0.956 0.846 0.786 0.728 0.682 0.638 0.605 0.588 0.570 

CE 0.101 0.307 0.422 0.553 0.657 0.724 0.815 0.854 0.956 

S 0.071 0.111 0.136 0.244 0.323 0.375 0.321 0.436 0.363 

LS 0.034 0.018 0.027 0.043 0.052 0.039 0.064 0.062 0.056 
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(a)                             (b) 

  
(c)                             (d) 

Fig. 7. (a) The original image containing a mobile phone, a toll, and an object of crescent; (b) the 
binary image by applying threshold to the original image; (c) the clustering result achieved by 
the GK algorithm at c = 3; (d) the clustering result achieved by the FCM algorithm at c = 3. 

 

Example 5: In this example, there are four objects with different geometric shapes in Fig. 
8 (a), which consists of an adhesive tape, a knife, a note and a cover of a teacup. The 
threshold technique is applied to extract the objects from the original image (see Fig. 8 
(b)), and then the object pixels are transferred to be the data patterns. The GK algorithm 
is used to cluster the data set. Table 5 shows the performance of each validity measure. 
The LS validity measure finds that the optimal cluster number c is at c = 4. However, the 
PC and CE validity measures find the optimal cluster number at c = 2, and the S validity 
measure finds the optimal cluster number at c = 3. The clustering results achieved by the 
GK and FCM algorithms at c = 4 are shown in Figs. 8 (c) and (d). 

Table 5. Numerical values of the validity measures for example 5. 
C 2 3 4 5 6 7 8 9 10 

PC 0.878 0.775 0.740 0.686 0.665 0.645 0.611 0.605 0.586 

CE 0.221 0.431 0.517 0.631 0.702 0.734 0.842 0.896 0.923 

S 0.151 0.110 0.113 0.287 0.225 0.723 0.419 0.908 0.302 

LS 0.023 0.044 0.012 0.114 0.083 0.127 0.096 0.086 0.120 

5. DISCUSSION AND CONCLUSION 

Based on the line symmetry distance, a new measure LS is then proposed for cluster 
validation. The simulation results reveal the interesting observations about the validity 
measures discussed in this paper. The S validity measure fails if not in one example, at  
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(a)                     (b) 

  
(c)                    (d) 

Fig. 8. (a) The original image containing an adhesive tape, a knife, a note and a cover of a teacup; 
(b) the binary image by applying threshold to the original image; (c) the clustering result 
achieved by the GK algorithm at c = 4; (d) the clustering result achieved by the FCM algo-
rithm at c = 4. 

 
least in the other, and the PC and CE validity measures fail in all the examples. The pro-
posed LS validity measure shows that consistency for these and several other examples 
that are tried. Because the line symmetry distance is extended from the point symmetry 
distance, one may interest the performance if the cluster validity measure is based on 
point symmetry. According our simulations, if the clusters with point symmetry structure 
(e.g. examples 2 and 3), the validity measure based on point symmetry should also per-
form well for these cases. However, if the geometrical structure of clusters is line sym-
metry (e.g. example 4), it not a good choice to use point symmetry as validity measure. 

Although these simulations show that the new measure outperforms the other three 
measures, we want to emphasize that there are also limitations associated with this new 
measure. First, we need to assume that clusters are line symmetrical structures. If the data 
set does not follow the assumption, the measure may not work well. Second, for large 
data sets, the determination of the measure is very computationally expensive. The price 
paid for the flexibility in detecting cluster number is the increase of computational com-
plexity. The computing complexity is O(N2), where N indicates the data number. In fact, 
a lot of future work can be done to improve not only the line symmetry distance but also 
the LS measure. 
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